
www.manaraa.com

K Q M L a s a n a g e n t c o m m u n i c a t i o n la n g u a g e
1

Tim Finin Yannis Labrou James May�eld

Computer Science Department

University of Maryland Baltimore County

Baltimore MD USA

f�nin,jklabrou,may�eldg@cs.umbc.edu

1This work was supported in part by the Air Force O�ce of Scienti�c Research under contract F49620{92{J{

0174, and by the Advanced Research Projects Agency monitored under USAF contracts F30602{93{C{0177 and

F30602{93{C{0028 by Rome Laboratory.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 1

1 Introduction

It is doubtful that any conversation about agents will result in a consensus on the de�nition of an agent or

of agency. From personal assistants and \smart" interfaces to powerful applications, and from autonomous,

intelligent entities to information retrieval systems, anything might qualify as an agent these days. But,

despite these di�erent viewpoints, most imaginary conversants would agree that the ability for interaction

and interoperation is desirable. The building block for intelligent interaction is knowledge sharing that

includes both mutual understanding of knowledge and the communication of that knowledge. The impor-

tance of such communication is emphasized by Genesereth, who goes so far as to suggest that an entity is a

software agent if and only if it communicates correctly in an agent communication language [10]. After all,

it is hard to picture cyberspace with entities that exist only in isolation; it would go against our perception

of a decentralized, interconnected electronic universe.

How might meaningful, constructive and intelligent interaction among software agents be provided?

The same problem for humans requires more than the knowledge of a common language, e.g., English; it

also requires a common understanding of the terms used in a given context. A physicist's understanding of

velocity is not the same as that of a car enthusiast,1 and if the two want to converse about \fast" cars they

have to speak a \common language." Also, humans must resort to a shared etiquette of communication,

that is a result of societal development, and that is partially encoded in the language. Although we are

not always conscious of doing so, we follow certain patterns when we ask questions or make requests. Such

patterns have common elements across human languages. Likewise, for software agents to interact and

interoperate e�ectively requires three fundamental and distinct components: 1) a common language; 2) a

common understanding of the knowledge exchanged; and 3) the ability to exchange whatever is included in

(1) and (2). We take e�ective interaction to be the exchange (communication) of information and knowledge

that can be mutually understood. The more applications that can communicate with one another, and the

wider the range of knowledge they can exchange, the better.

This perspective on interoperability in today's computing environment has been the foundation of

the approach of the Knowledge Sharing E�ort (KSE) consortium. We present the approach of the KSE

and the solutions suggested for the subproblems identi�ed by the consortium, emphasizing the KSE's

communication language and protocol KQML (Knowledge Query and Manipulation Language). In addition

to presenting speci�c solutions, we are interested in demonstrating the conceptual decomposition of the

problem of knowledge sharing into smaller more manageable problems, and in arguing that there is merit

to those concepts independent of the success of individual solutions.

In the remainder of this chapter we provide a brief coverage of the objectives and approach of the

Knowledge Sharing E�ort (Section 2), and a summary of the major results of the KSE (Section 3). In

Section 4 we attempt to de�ne the notion of a communication language and its desired features. In

Section 5 we present the agent communication language KQML (a product of the KSE research) along

with our notion of an environment of KQML-speaking agents. In Section 6 we evaluate KQML as a

communication language. Section 7 provides an overview of applications and environments that have used

KQML, and Section 8 surveys other communication languages (and/or approaches) with which we feel

that KQML is (or should be) competing.

1Unless of course the physicist also happens to be interested in cars.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 2

Reasoning

Planning

Modelling

Transport Protocol

Communication Language

Interaction Protocol

COMMUNICATION

Ontologies

Knowledge Base
Meta-Knowledge

REPRESENTATION

Figure 1: An abstract model for interoperating software agents

2 The approach of the Knowledge{Sharing E�ort (KSE)

Let us address the issue of software agents and interoperability in more detail. We will refer to software

agents as applications for which the ability to communicate with other applications and share knowledge is

of primary importance. Figure 1 summarizes the possible components of such an agent; they are grouped

into representation components, communication components, and components that are not directly related

to shared understanding.

Mutual understanding of what is represented may be divided into two subproblems: 1) translation

from one representation language to another (or from one family of representation languages to another);

and 2) sharing the semantic content (and often the pragmatic content) of the represented knowledge

among di�erent applications. Translation alone is not su�cient because each knowledge base holds implicit

assumptions about the meaning of what is represented. If two applications are to understand each other's

knowledge, such assumptions must also be shared. That is, the semantic content of the various tokens

must be preserved.

Communication is a threefold problem: 1) interaction protocol; 2) communication language; and 3)

transport protocol. The interaction protocol refers to the high level strategy pursued by the software agent

that governs its interaction with other agents. Such a protocol can range from negotiation schemes and

game theory protocols to protocols as simple as \every time you do not know something, �nd someone

who knows and ask." The communication language is the medium through which the attitudes regarding

the content of the exchange are communicated. It is the communication language that suggests whether

the content of the communication is an assertion, a request or some form of query. The transport protocol

is the actual transport mechanism used for the communication, such as TCP, SMTP, http, etc. Practical

considerations may favor the use of one of those over others.2

Software agents may (or may not) have other components to help the agent carry out its business.

2For systems that use �rewalls, SMTP is a more likely choice than TCP.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 3

The ability to reason about its own actions, to represent metaknowledge, to plan activities or to model

other agents can enhance the capabilities of an application. Such components are peripheral to the virtual

knowledge base, although they are usually built on top of it. Although they may use the virtual knowledge

base or the communication language to implement their agendas, the issues associated with them should

be viewed as orthogonal to the issues of mutual understanding and communication.

The Knowledge{Sharing E�ort (KSE), sponsored by the Advanced Research Projects Agency (ARPA),

the Air Force O�ce of Scienti�c Research (ASOFR), the Corporation for National Research Initiative

(NRI) and the National Science Foundation (NSF), is an initiative to develop technical infrastructure to

support knowledge sharing among systems [18]. The KSE is organized around the following three working

groups, each of which addresses a complementary problem identi�ed in current knowledge representation

technology: Interlingua, Shared Reusable Knowledge Bases, and External Interfaces.

� The Interlingua Group is developing a common language for expressing the content of a knowledge{

base. This group has published a speci�cation document describing the Knowledge Interchange

Format, or KIF [9]. KIF can be used to support translation from one content language to another,

or as a common content language between two agents which use di�erent native representation lan-

guages. Information about KIF and associated tools and is available over the Internet.3 A group

within the KSE with a similar scope is the KRSS Group (Knowledge Representation System Speci�-

cation). This group focuses on the de�nition of common constructs within families of representation

languages. The group has produced a common speci�cation for terminological representations in the

KL{ONE family.4

� The SRKB Group (Shared, Reusable Knowledge Bases) is concerned with facilitating consensus on

the content of sharable knowledge bases, with sub{interests in shared knowledge for particular topic

areas and in topic{independent development tools and methodologies. It has established a repository

for sharable ontologies and tools, which is available over the Internet.5

� The scope of the External Interfaces Group is run{time interaction between knowledge{based sys-

tems and other modules in a run{time environment. Special attention has been given to two im-

portant cases|communication between two knowledge{based systems and communication between a

knowledge{based system and a conventional database management system [21]. The KQML language

is one of the main results to come out of the external interfaces group of the KSE.6

These three groups of the KSE roughly address the interoperability issues at the levels identi�ed by the

three shaded boxes of Figure 1; the results of the research e�orts, namely KIF, Ontolingua and KQML,

are the speci�c solutions suggested for them.

3 The solutions of the Knowledge{Sharing E�ort

KIF is the solution suggested by the KSE for the syntactic aspects of representations for knowledge sharing.

The language is intended as a powerful vehicle to express knowledge and meta{knowledge. There were two

di�erent intentions behind the development of a language like KIF: 1) creation of a lingua franca for the

development of intelligent applications, with an emphasis on interoperation (in cooperation with the other

3The URL is http://www.cs.umbc.edu/kse/kif/.
4This document and other information on the KRSS group is available as http://www.cs.umbc.edu/kse/krss/.
5The URL is http://www.cs.umbc.edu/kse/srkb/.
6General information about KQML is available from http://www.cs.umbc.edu/kqml/.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 4

components of the \package solution" of the KSE); and 2) creation of a common interchange format so

that with the use of \translators" one could translate from language A to KIF and from KIF to language B

instead of translating from A to B.7 KIF has found its way into applications,8 but it remains to be proven

whether it will ful�ll any of its intended roles.

Next we provide a brief coverage of KIF, the ideas behind ontologies and Ontolingua (the framework

for the development of ontologies) and KQML. This is not intended as a detailed analysis, but rather as

an introduction to the main ideas of these research e�orts. The remainder of this presentation is primarily

concerned with KQML and its function as a communication language for software agents.

3.1 Knowledge Interchange Format (KIF)

KIF9 is a pre�x version of �rst order predicate calculus with extensions to support non{monotonic reasoning

and de�nitions. The language description includes both a speci�cation for its syntax and one for its

semantics. First and foremost, KIF provides for the expression of simple data. For example, the sentences

shown below encode 3 tuples in a personnel database (arguments stand for employee ID number, department

assignment and salary, respectively):

(salary 015-46-3946 widgets 72000)

(salary 026-40-9152 grommets 36000)

(salary 415-32-4707 fidgets 42000)

More complicated information can be expressed through the use of complex terms. For example, the

following sentence states that one chip is larger than another:

(> (* (width chip1) (length chip1)) (* (width chip2) (length chip2)))

KIF includes a variety of logical operators to assist in the encoding of logical information (such as negation,

disjunction, rules, quanti�ed formulas, and so forth). The expression shown below is an example of a

complex sentence in KIF. It asserts that the number obtained by raising any real{number ?x to an even

power ?n is positive:

(=> (and (real-number ?x) (even-number ?n)) (> (expt ?x ?n) 0))

KIF provides for the encoding of knowledge about knowledge, using the backquote (`) and comma (,)

operators and related vocabulary. For example, the following sentence asserts that agent Joe is interested

in receiving triples in the salary relation.10

(interested joe `(salary ,?x ,?y ,?z))

7So for n languages the number of translators needed would be n instead of n2. Of course the advantages of having a

common interchange format go beyond such a reduction; but de�ning the advantages (and disadvantages) of such an approach

has been an issue of debate.
8Primarily in conjunction with ACL, an implementation of KQML, which is standard KQML with a commitment to KIF

as the content language.
9This presentation of KIF is based on a similar presentation [10].
10The use of commas signals that the variables should not be taken literally. Without the commas, this sentence would say

that agent joe is interested in the sentence (salary ?x ?y ?z) instead of its instances.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 5

KIF can also be used to describe procedures, i.e. to write programs or scripts for agents to follow. Given

the pre�x syntax of KIF, such programs resemble Lisp or Scheme. The following is an example of a three{

step procedure written in KIF. The �rst step ensures that there is a fresh line on the standard output

stream; the second step prints Hello! to the standard output stream; the �nal step adds a carriage return

to the output.

(progn (fresh-line t) (print "Hello!") (fresh-line t))

The semantics of the KIF core (KIF without rules and de�nitions) is similar to that of �rst order logic.

There is an extension to handle nonstandard operators (like ` and ,), and there is a restriction that models

satisfy various axiom schemata (to give meaning to the basic vocabulary in the format). Despite these

extensions and restrictions, the core language retains the fundamental characteristics of �rst order logic,

including compactness and the semi{decidability of logical entailment.

3.2 Ontologies and Ontolingua

The SRKB Working Group is also working on the problem of sharing the content of formally represented

knowledge. Sharing content requires more than a formalism (such as KIF) and a communication language

(KQML). Although the problem of understanding what must be held in common among communicating

agents is a fundamental question of philosophy and science, the SRKB is focusing on the practical problem

of building knowledge{based software that can be reused as o�{the{shelf technology. The approach is

to focus on common ontologies [18]. Every knowledge{based system relies on some conceptualization of

the world (objects, qualities, distinctions and relationships that matter for performing some task) that is

embodied in concepts, distinctions, etc. in a formal representation scheme. A common ontology refers

to an explicit speci�cation of the ontological commitments of a set of programs. Such a speci�cation should

be an objective (i.e., interpretable outside of the program) description of the concepts and relationships

that the programs use to interact with other programs, knowledge bases, and human users. An agent

commits to an ontology if its observable actions are consistent with the de�nitions in the ontology.

The SRKB Group has worked on the construction of ontologies for various domains. Ontologies are

written in KIF, using the de�nitional vocabulary of Ontolingua.11 Each ontology de�nes a set of classes,

functions, and object constants for some domain of discourse, and includes an axiomatization to constrain

the interpretation. The resulting language (the basic logic of KIF + the vocabulary and theory from the

ontologies) allows for the sentences to be interpreted unambiguously and independent of context, making

the relevant detail explicit. These ontologies can then be used by communicating application. There has

been a considerable number of ontologies developed by the group, on a variety of domains that might be

of interest to software applications.

3.3 Knowledge Query Manipulation Language (KQML)

KQML was conceived as both a message format and a message{handling protocol to support run{time

knowledge sharing among agents. The key features of KQML may be summarized as follows:

� KQML messages are opaque to the content they carry. KQML messages do not merely communicate

sentences in some language, but they rather communicate an attitude about the content (assertion,

request, query).

11See http://www-ksl.stanford.edu/knowledge-sharing/ontologies/README.html for more information on ontologies and

the various projects with which the SRKB Group has been involved.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 6

� The language's primitives are called performatives. As the term suggests, the concept is related to

speech act theory. Performatives de�ne the permissible actions (operations) that agents may attempt

in communicating with each other.

� An environment of KQML speaking agents may be enriched with special agents, called facilitators,

that provide such functions as: association of physical addresses with symbolic names; registration

of databases and/or services o�ered and sought by agents; and communication services (forwarding,

brokering etc.). To use a metaphor, facilitators act as e�cient secretaries for the agents in their

domain.

Intelligent interaction is more than an exchange of messages. As suggested in Section 2, KQML is an

attempt to dissociate these issues from the communication language, which should de�ne a set of standard

message types that are to be interpreted identically by all interacting parties. A universal communication

language is of interest to a wide range of applications that need to communicate something more than

pre{de�ned or �xed statements of facts. KQML is the centerpiece of this presentation; it is described in

more detail in Section 5.

4 Communication languages and their desired features

It is fair to ask whether one can talk about an agent communication language without referring to the

properties of agency. Instead of providing a comprehensive de�nition of agency we suggest that agents are

commonly taken to be \high{level" (i.e., they use symbolic representation, display cognitive{like function,

and/or have a belief and/or a knowledge store), and are commonly viewed as having an intentional level

description (i.e., their state is viewed as consisting of mental components such as beliefs, capabilities,

choices, commitments etc.). We take this \description" to be a helpful abstract model for viewing software

agents, even if their actual implementation does not make claims to such ambitious concepts. Agents then

reside at the knowledge level [19, 20] and cannot therefore be accommodated by languages or protocols

that appear in Distributed Computing and focus on processes rather than on programs or collection of

programs that constitute the agents. As a result, a communication language should be powerful enough to

support communication between programs that are viewed as being at this higher level (with an intentional

description); otherwise the agents will have to bear the task of translating between the lower level and the

agent's level.

It should also be made clear that a communication language is not a protocol, although both may

be concerned with communication and communication-related issues. The distinction between a com-

munication language and a protocol is often fuzzy. A protocol, as used or mentioned in the context of

communication languages, may have any of the following three meanings: 1) a transport protocol, like

http, smtp, ftp, etc.; 2) a high level framework for interaction, such as negotiation, game theory protocols,

planning, etc.; or 3) constraints on the possible valid exchanges of communication primitives.12 A commu-

nication language may use protocols of the �rst kind as transport mechanisms, may be used by protocols

of the second kind as a way to implement them, and usually includes protocols of the third kind as part of

its description; but a communication language de�nitely is not merely a protocol itself.

In this section we suggest requirements for agent communication languages. We divide these require-

ments into seven categories: form, content, semantics, implementation, networking, environment, and

reliability. We believe that an agent communication language will be valuable to the extent that it meets

12Very much as in meaningful communications between sane human beings, where a question about the time for example

will be followed by a response (hopefully about time) and not by another question about the weather.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 7

these requirements. At times, these requirements may be in con
ict with one another. For example,

a language that can be easily read by people might not be as concise as possible. It is the job of the

language designer to balance these various needs. In Section 6 we evaluate KQML with respect to these

requirements.

Form

A good agent communication language should be declarative, syntactically simple, and readable by people.

It should be concise, yet easy to parse and to generate. To transmit a statement of the language to

another agent, the statement must pass through the bit stream of the underlying transport mechanism.

Thus, the language should be linear or should be easily translated into a linear form. Finally, because a

communication language will be integrated into a wide variety of systems, its syntax should be extensible.

Content

A communication language should be layered in a way that �ts well with other systems. In particular,

a distinction should be made between the communication language, which expresses communicative acts,

and the content language, which expresses facts about the domain. Such layering facilitates the successful

integration of the language to applications while providing a conceptual framework for the understanding

of the language. The language should commit to a well de�ned set of communicative acts (primitives).

Although this set could be extensible, a core of primitives that capture most of our intuitions about what

constitutes a communicative act irrespective of application (database, object-oriented system, knowledge

base, etc.) will ensure the usability of the language by a variety of systems. The choice of the core set of

primitives also relates to the decision of whether to commit to a speci�c content language. A commitment

to a content language allows for a more restricted set of communicative acts because it is then possible to

carry more information at the content language level. The disadvantage is that all applications must then

use the same content language; this is a heavy constraint.

Semantics

Although the semantic description of communication languages and their primitives is often limited to

natural language descriptions, a well-de�ned semantic description is necessary if the communication lan-

guage is intended for interaction among a diverse range of applications. Applications designers should have

a shared understanding of the language, its primitives and the protocols associated with their use, and

abide by that shared understanding. The semantics of a communication language should exhibit those

properties expected of the semantics of any other language. It should be grounded in theory, and it should

be unambiguous. It should exhibit canonical form (similarity in meaning should lead to similarity in repre-

sentation). Because a communication language is intended for interaction that extends over time amongst

spatially dispersed applications, location and time should be carefully addressed by the semantics. Finally,

the semantic description should provide a model of communication, which would be useful for performance

modeling, among other things.

Implementation

The implementation should be e�cient, both for speed, and for bandwidth utilization. It should provide a

good �t with existing software technology. The interface should be easy to use; details of the networking

layers that lie below the primitive communicative acts should be hidden from the user. Finally, the language



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 8

should be amenable to partial implementation, because simple agents may only need to handle a subset of

the primitive communicative acts.

Networking

An agent communication language should �t well with modern networking technology. This is particularly

important because some of the communication will be about concepts involving networked communications.

The language should support all of the basic connections|point-to-point, multicast and broadcast. Both

synchronous and asynchronous connections should be supported. The language should contain a rich

enough set of primitives that it can serve as a substrate upon which higher-level languages and interaction

protocols can be built. Moreover, these higher-level protocols should be independent of the transport

mechanisms (e.g., TCP/IP, email, http, etc.) used.

Environment

The environment in which intelligent agents will be required to work will be highly distributed, hetero-

geneous, and extremely dynamic. To provide a communication channel to the outside world in such an

environment, a communication language must provide tools for coping with heterogeneity and dynamism.

It must support interoperability with other languages and protocols. It must support knowledge discovery

in large networks. Finally, it must be easily attachable to legacy systems.

Reliability

A communication language must support reliable and secure communication among agents. Provisions for

secure and private exchanges between two agents should be supported. There should be a way to guarantee

authentication of agents. We should not assume that agents are infallible or perfect|they should be

robust to inappropriate or malformed messages. The language should support reasonable mechanisms for

identifying and signaling errors and warnings.

5 Knowledge Query Manipulation Language (KQML)

To address many of the di�culties of communication among intelligent agents, we must give them a

common language. In linguistic terms, this means that they must share a common syntax, semantics and

pragmatics. Getting information processes or software agents to share a common syntax is a major problem.

There is no universally accepted language in which to represent information and queries. Languages such

as KIF [9], extended SQL, and LOOM [16] have their supporters, but there is also a strong position that

it is too early to standardize on any representation language [13]. As a result, it is currently necessary

to say that two agents can communicate with each other if they have a common representation language

or use languages that are inter{translatable. Assuming the use of a common or translatable language,

it is still necessary for communicating agents to share a framework of knowledge in order to interpret

the messages they exchange. This is not really a shared semantics, but a shared ontology. There is not

likely to be one shared ontology, but many. Shared ontologies are under development in many important

application domains such as planning and scheduling, biology and medicine. Pragmatics among computer

processes includes 1) knowing with whom to talk and how to �nd them; and 2) knowing how to initiate and

maintain an exchange. KQML is concerned primarily with pragmatics (and secondarily with semantics).

It is a language and a set of protocols that support computer programs in identifying, connecting with and

exchanging information with other programs.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 9

In the next two sections we present the KQML language, its primitives and protocols supported, and

the software environment of KQML{speaking applications.

5.1 A description of KQML

The KQML language is divided into three layers: the content layer, the message layer, and the communica-

tion layer. The content layer bears the actual content of the message, in the programs own representation

language. KQML can carry any representation language, including languages expressed as ASCII strings

and those expressed using a binary notation. Every KQML implementation ignores the content portion of

the message, except to determine where it ends.

The communication level encodes a set of features to the message which describe the lower level com-

munication parameters, such as the identity of the sender and recipient, and a unique identi�er associated

with the communication.

It is the message layer that is used to encode a message that one application would like to transmit to

another. The message layer forms the core of the KQML language, and determines the kinds of interactions

one can have with a KQML{speaking agent. The primary function of the message layer is to identify the

protocol to be used to deliver the message and to supply a speech act or performative which the sender

attaches to the content (such as that it is an assertion, a query, a command, or any of a set of known

performatives). In addition, since the content is opaque to KQML, this layer also includes optional features

which describe the content language, the ontology it assumes, and some type of description of the content,

such as a descriptor naming a topic within the ontology. These features make it possible for KQML

implementations to analyze, route and properly deliver messages even though their content is inaccessible.

The syntax of KQML is based on a balanced parenthesis list. The initial element of the list is the

performative; the remaining elements are the performative's arguments as keyword/value pairs. Because

the language is relatively simple, the actual syntax is not signi�cant and can be changed if necessary in

the future. The syntax reveals the roots of the initial implementations, which were done in Common Lisp;

it has turned out to be quite 
exible.

A KQML message from agent joe representing a query about the price of a share of IBM stock might

be encoded as:

(ask-one

:sender joe

:content (PRICE IBM ?price)

:receiver stock-server

:reply-with ibm-stock

:language LPROLOG

:ontology NYSE-TICKS)

In this message, the KQML performative is ask-one, the content is (price ibm ?price), the ontology

assumed by the query is identi�ed by the token nyse-ticks, the receiver of the message is to be a server

identi�ed as stock-server and the query is written in a language called LPROLOG. The value of the

:content keyword is the content level, the values of the :reply-with, :sender, :receiver keywords

form the communication layer and the performative name, with the :language and :ontology form the

message layer. In due time, stock-server might send to joe the following KQML message:

(tell

:sender stock-server



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 10

:content (PRICE IBM 14)

:receiver joe

:in-reply-to ibm-stock

:language LPROLOG

:ontology NYSE-TICKS)

A query similar to the ask-all query could be conveyed using standard Prolog as the content language

in a form that requests the set of all answers as:

(ask-all

:content "price(IBM, [?price, ?time])"

:receiver stock-server

:language standard_prolog

:ontology NYSE-TICKS)

The �rst message asks for a single reply; the second asks for a set as a reply. If we had posed a query

which had a large number of replies, would could ask that they each be sent separately, instead of as a

single large collection by changing the performative. (To save space, we will no longer repeat �elds which

are the same as in the above examples.)

(stream-all

;;?VL is a large set of symbols

:content (PRICE ?VL ?price))

The stream-all performative asks that a set of answers be turned into a set of replies. To exert control of

this set of reply messages we can wrap another performative around the preceding message.

(standby

:content (stream-all

:content (PRICE ?VL ?price)))

The standby performative expects a KQML language content and it requests that the agent receiving

the request take the stream of messages and hold them and release them one at a time, each time the

sending agent transmits a message with the next performative. The exchange of next/reply messages can

continue until the stream is depleted or until the sending agent sends either a discard message (i.e. discard

all remaining replies) or a rest message (i.e. send all of the remaining replies now).

A di�erent set of answers to the same query can be obtained (from a suitable server) with the query:

(subscribe

:content (stream-all

:content (PRICE IBM ?price)))

This performative requests all future changes to the answer to the query, i.e. it is a stream of messages

which are generated as the trading price of IBM stock changes.

Though there is a prede�ned set of reserved performatives, it is neither a minimal required set nor a

closed one. A KQML agent may choose to handle only a few (perhaps one or two) performatives. The

set is extensible; a community of agents may choose to use additional performatives if they agree on

their interpretation and the protocol associated with each. However, an implementation that chooses to

implement one of the reserved performatives must implement it in the standard way.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 11

Category Name

Basic query evaluate, ask-if, ask-about, ask-one, ask-all

Multi-response (query) stream-about, stream-all, eos

Response reply, sorry

Generic informational tell, achieve, cancel, untell, unachieve

Generator standby, ready, next, rest, discard, generator

Capability-de�nition advertise, subscribe, monitor, import, export

Networking register, unregister, forward, broadcast, route,

Table 1: There are about two dozen reserved performative names which fall into seven basic categories.

Some of the reserved performatives are shown in Table 1. In addition to standard communication

performatives such as ask, tell, deny, delete, and more protocol oriented performatives such as subscribe,

KQML contains performatives related to the non{protocol aspects of pragmatics, such as advertise|which

allows an agent to announce what kinds of asynchronous messages it is willing to handle; and recruit|which

can be used to �nd suitable agents for particular types of messages (the uses of these performatives are

described in the next section). For example, the server in the above example might have earlier announced:

(advertise

:ontology NYSE-TICKS

:language LPROLOG

:content (stream-all

:content (PRICE ?x ?y)))

Which is roughly equivalent to announcing that it is a stock ticker and inviting monitor requests concerning

stock prices. This advertise message is what justi�es the subscriber's sending the stream-all message.

There are a variety of interprocess information exchange protocols in KQML. In the simplest, one

agent acts as a client and sends a query to another agent acting as a server and then waits for a reply,

as is shown between agents A and B in Figure 2. The server's reply might consist of a single answer or a

collection or set of answers. In another common case, shown between agents A and C, the server's reply

is not the complete answer but a handle which allows the client to ask for the components of the reply,

one at a time. A common example of this exchange occurs when a client queries a relational database or

a reasoner which produces a sequence of instantiations in response. Although this exchange requires that

the server maintain some internal state, the individual transactions are as before|involving a synchronous

communication between the agents. A somewhat di�erent case occurs when the client subscribes to a

server's output and an inde�nite number of asynchronous replies arrive at irregular intervals, as between

agents A and D in Figure 2. The client does not know when each reply message will be arriving and may

be busy performing some other task when they do.

AC D

B

query
handle

next
reply

next
reply

query

reply

reply
subscribe

reply
reply

Figure 2: Several basic communication protocols are supported in KQML.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 12

F

BA

Figure 3: When A is aware of B and of the appropriateness of querying B about X, a simple point-to-point protocol can

be used.

There are other variations of these protocols. Messages might not be addressed to speci�c hosts, but

broadcast to a number of them. The replies, arriving synchronously or asynchronously have to be collated

and, optionally, associated with the query that they are replying to.

5.2 Facilitators, mediators and the environment of KQML-speaking agents

One of the design criteria for KQML was to produce a language that could support a wide variety of

interesting agent architectures. Our approach to this is to introduce a small number of KQML performatives

which are used by agents to describe the meta-data specifying the information requirements and capabilities

and then to introduce a special class of agents called communication facilitators [10]. A facilitator is an

agent that performs various useful communication services, e.g. maintaining a registry of service names,

forwarding messages to named services, routing messages based on content, providing \matchmaking"

between information providers and clients, and providing mediation and translation services.

F

BA

Figure 4: Agent A can ask facilitator agent F to monitor for changes in its knowledge-base. Facilitators are agents that

deal in knowledge about the information services and requirements of other agents and o�er such services as forwarding,

brokering, recruiting and content-based routing.

As an example, consider a case where an agent A would like to know the truth of a sentence X, and

agent B may have X in its knowledge-base, and a facilitator agent F is available. If A is aware that it is

appropriate to send a query about X to B, then it can use a simple point to point protocol and send the

query directly to B, as in Figure 3.

If, however, A is not aware of what agents are available, or which may have X in their knowledge-bases,

or how to contact those of whom it is aware, then a variety of approaches can be used. Figure 4 shows an

example in which A uses the subscribe performative to request that facilitator F monitor for the truth of

X. If B subsequently informs F that it believes X to be true, then F can in turn inform A.

Figure 5 shows a slightly di�erent situation. A asks F to �nd an agent that can process an ask(X)

performative. B independently informs F that it is willing to accept performatives matching ask(X). Once

F has both of these messages, it sends B the query, gets a response and forwards it to A.

Figure 6, A uses a slightly di�erent performative to inform F of its interest in knowing the truth of

X. The recruit performative asks the recipient to �nd an agent that is willing to receive and process an



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 13

F

BA

Figure 5: The broker performative is used to ask a facilitator agent to �nd another agent which can process a given

performative and to receive and forward the reply.

embedded performative. That agent's response is then to be directly sent to the initiating agent. Although

the di�erence between the examples used in Figures 5 and 6 are small for a simple ask query, consider

what would happen if the embedded performative was subscribe(ask-all(X)).

As a �nal example, consider the exchange in Figure 7 in which A asks F to \recommend" an agent to

whom it would be appropriate to send the performative ask(X)). Once F learns that B is willing to accept

ask(X) performatives, it replies to A with the name of agent B. A is then free to initiate a dialogue with

B to answer this and similar queries.

From these examples, we can see that one of the main functions of facilitator agents is to help other

agents �nd appropriate clients and servers. The problem of how agents �nd facilitators in the �rst place is

not strictly an issue for KQML and has a variety of possible solutions.

Current KQML-based applications have used one of two simple techniques. In the PACT project [6], for

example, all agents used a central, common facilitator whose location was a parameter initialized when the

agents were launched. In the ARPI applications [4], �nding and establishing contact with a local facilitator

is one of the functions of the KQML API. When each agent starts up, its KQML router module announces

itself to the local facilitator so that it is registered in the local database. When the application exits,

the router sends another KQML message to the facilitator, removing the application from the facilitator's

database. By convention, a facilitator agent should be running on a host machine with the symbolic address

facilitator.domain and listening to the standard KQML port.

6 Evaluation of KQML as an agent communication language

In this section, we evaluate the KQML language as it stands today, relative to our requirements for agent

communication languages, given in Section 4.

Form

The only primitives of the languages, i.e., the performatives, convey the communicative act and the actions

to be taken as a result Thus the form should be deemed to be declarative. In format, KQML messages are

linear streams of characters with a Lisp-like syntax. Although this formatting is irrelevant to the functions

F

BA

Figure 6: The recruit performative is used to ask a facilitator agent to �nd an appropriate agent to which an embedded

performative can be forwarded. Any reply is returned directly to the original agent.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 14

F

BA

Figure 7: The recommend performative is used to ask a facilitator agent to respond with the \name" of another agent

which is appropriate for sending a particular performative.

of the language, it makes the messages easy to read, to parse and to convert to other formats.13 The syntax

is simple and allows for the addition of new parameters, if deemed necessary, in a future revision of the

language.

Content

The KQML language can be viewed as being divided into three layers: the content layer, the message

layer and the communication layer. KQML messages are oblivious to the content they carry. Although in

current implementations of the language there is no support for non{ASCII content, there is nothing in

the language that would prevent such support. The language o�ers a minimum set of performatives that

covers a basic repertoire of communicative acts. They constitute the message layer of the language and are

to be interpreted as speech acts. Although there is no \right" necessary and su�cient set of communicative

acts, KQML designers tried to �nd the middle ground between the two extremes: 1) providing a small set

of primitives thereby requiring overloading at the content level; and 2) providing an extensive set of acts,

where inevitably acts will overlap one another and/or embody �ne distinctions. The communication layer

encodes a set of features to the message which describe the lower level communication parameters, such as

the identity of the sender and recipient, and a unique identi�er associated with the communication.

Semantics

KQML semantics is still an open issue. For now there are only natural language descriptions of the intended

meaning of the performatives and their use (protocols). An approach that emphasizes the speech act 
avor

of the communication acts is a thread of ongoing research [14].

Implementation

The two implementations of KQML currently available, the Lockheed KQML API and the UNISYS KQML

API, each provides a content{independent message router and a facilitator. The application must provide

handler functions for the performatives in order for the communication acts to be processed by the appli-

cation and eventually return the proper response(s). It is not necessary that an application should handle

all performatives since not all KQML-speaking applications will be equally powerful. Creating a KQML

speaking interface to an existing application is a matter of providing the handler functions. The e�ciency

of KQML communication has been investigated. Various compression enhancements have been added

which cut communication costs by reducing message sizes and also by eliminating a substantial fraction of

symbol lookup and string duplication.

13Simple programs exist to convert KQML messages to predicate-like format.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 15

Networking

KQML{speaking agents can communicate directly with other agents (addressing them by symbolic name),

broadcast their messages or solicit the services of fellow agents or facilitators for the delivery of a message

by using the appropriate performatives (see Section 7. KQML allows for both synchronous/asynchronous

interactions and blocking/non-blocking message sending on behalf of an application through assignment

of the appropriate values for those parameters in a KQML message.

Environment

KQML can use any transport protocol as its transport mechanism (http, smtp, TCP/IP etc.). Also, be-

cause KQML messages are oblivious to content, there are no restrictions on the content language beyond

the provision of functions that handle the performatives for the content language of the application. In-

teroperability with other communication languages remains to be addressed as such languages appear.

One such attempt has been made by Davis, whose Agent{K attempts to bridge KQML and Shoham's

Agent Oriented Programming [22]. The existence of facilitators in the KQML environment can provide

the means for knowledge discovery in large networks, especially if facilitators can cooperate with other

knowledge discovery applications available in the World Wide Web.

Reliability

The issues of security and authentication have not been addressed properly thus far by the KQML com-

munity. No decision has been made on whether they should be handled at the transport protocol level or

at the language level. At the language level, new performatives or message parameters can be introduced

that allow for encryption of either the content or the whole KQML message. Since KQML speaking agents

might be imperfect, there are performatives (such as error and sorry) that can be used as responses to

messages that an application cannot process or comprehend.

7 Applications of KQML

The KQML language and implementations of the protocol have been used in several prototype and demon-

stration systems. The applications have ranged from concurrent design and engineering of hardware and

software systems, military transportation logistics planning and scheduling, 
exible architectures for large{

scale heterogeneous information systems, agent{based software integration and cooperative information

access planning and retrieval. KQML has the potential to signi�cantly enhance the capabilities and func-

tionality of large{scale integration and interoperability e�orts now underway in communication and in-

formation technology such as the national information infrastructure and OMG's CORBA, as well as in

application areas in electronic commerce, health information systems and virtual enterprise integration.

The content languages used have included languages intended for knowledge exchange including the Knowl-

edge Interchange Format (KIF) and the Knowledge Representation Speci�cation Language (KRSL) [15] as

well as other more traditional languages such as SQL. Early experimentations with KQML began in 1990.

The following is a representative selection of applications and experiments developed using KQML.

The design and engineering of complex computer systems, whether exclusively hardware or software

systems or both, today involves multiple design and engineering disciplines. Many such systems are de-

veloped in fast cycle or concurrent processes which involve the immediate and continual consideration of

end{product constraints, e.g., marketability, manufacturing planning, etc. Further, the design, engineering



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 16

and manufacturing components are also likely to be distributed across organizational and company bound-

aries. KQML has proved highly e�ective in the integration of diverse tools and systems enabling new tool

interactions and supporting a high{level communication infrastructure reducing integration cost as well as


exible communication across multiple networking systems. The use of KQML in these demonstrations

has allowed the integrators to focus on what the integration of design and engineering tools can accomplish

and appropriately deemphasized how the tools communicate [11, 17, 7, 8].

KQML has been used as the communication language in several technology integration experiments

in the ARPA Rome Lab Planning Initiative. One of these experiments supported an integrated planning

and scheduling system for military transportation logistics linking a planning agent (in SIPE [23, 3]), with

a scheduler (in Common Lisp), a knowledge base (in LOOM [16]), and a case based reasoning tool (in

Common Lisp). All of the components integrated were preexisting systems which were not designed to

work in a cooperative distributed environment.

In a second experiment, we developed a information agent consisting of CoBASE [5], a cooperative

front{end, SIMS [1, 2], an information mediator for planning information access, and LIM [21], an infor-

mation mediator for translating relational data into knowledge structures. CoBASE processes a query,

and, if no responses are found relaxes the query based upon approximation operators and domain seman-

tics and executes the query again. CoBASE generates a single knowledge{based query for SIMS which

using knowledge of di�erent information sources selects which of several information sources to access,

partitions the query and optimizes access. Each of the resulting queries in this experiment is sent to a

LIM knowledge server which answers the query by creating objects from tuples in a relational database. A

LIM server front{ends each di�erent database. This experiment was run over the internet involving three,

geographically dispersed sites.

Agent{Based Software Integration [12] is an e�ort underway at Stanford University which is applying

KQML as an integrating framework for general software systems. Using KQML, a federated architecture

incorporating a sophisticated facilitator is developed which supports an agent{based view of software

integration and interoperation [10]. The facilitator in this architecture is an intelligent agent used to

process and reason about the content of KQML messages, supporting tighter integration of disparate

software systems.

Other work done at Stanford involves ACL (Agent Communication Language), an implementation

of KQML that di�ers from \pure" KQML in the commitment it makes to KIF as the content language

of the interacting applications. ACL has been used in several large{scale demonstrations of software

interoperation, and the results are promising. Full speci�cations are available, and parts of the language

are making their way through various standards organizations. Several start{up companies are proposing

to o�er commercial products for processing ACL; and a number of established computer system vendors

are looking at ACL as a possible language for communication among heterogeneous systems. Genesereth

provides more about the speci�cs of this approach [10] whose success is tied to the advantages and feature

of KIF.

We have also successfully used KQML in other smaller demonstrations integrating distributed clients

(in C) with mediators which were retrieving data from distributed databases. Mediators are not just limited

distributed database access. In another demonstration, we experimented with a KQML URL for the World

Wide Web. The static nature of links within such hypermedia structures lends itself to be extended with

virtual and dynamic links to arbitrary information sources as can be supported easily with KQML.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 17

8 Other communication languages

There has not been much work on communication languages from a practitioner's point of view. If we set

aside work on network (transport) protocols or protocols in distributed computing as being too ine�cient

for the purposes of intelligent agents (as opposed to processes) the rest of the relevant research may be

divided into two categories: 1) theoretical constructs and formalisms that address the issue of agency

in general and communication in particular, as a dimension of agent behavior, with an emphasis on the

intentional description of an agent;14 and 2) agent languages and associated communication languages that

have evolved to some degree to applications. In both cases, the reader should bear in mind that there has

not been any work on communication languages of which we are aware that are not part a broader project

that commits to speci�c architectures.

Agent Oriented Programming

Although Agent Oriented Programming (AOP) could be classi�ed in the �rst one of the categories men-

tioned above, the fact that it comes with a programming language in which one can program agents that

communicate and evolve, makes it more than a construct of a theoretical interest. In AOP [22] agents

are viewed as entities whose state is viewed as consisting of mental components such as beliefs, capabil-

ities, choices and commitments. Although this so called intentional description of a software system is

nothing new, AOP introduces a formal language with syntax and semantics to describe the mental states

and an interpreted programming language, called AGENT{0 that has semantics that is consistent with

those of the mental states, and in which a programmer can program an agent. A part of AGENT{0, 15

is a communication language that introduces primitives for the interaction of agents. The primitives are

speech acts, their semantics are provided in terms of their execution (the communication acts update the

belief and the commitment space of an agent), and may be executed conditionally (according to whether

certain mental states hold). AGENT{O is limited in many important ways, for example facts have to be

atomic sentences (no conjunction, disjunction, or modal operators allowed) and commitments can only be

made for primitive actions (no planning), but it was primarily intended as a prototype, to illustrate the

principles of AOP. An attempt to alleviate some of the de�ciencies of AGENT{0 was done with PLACA

that includes operators for planning to do actions and achieve goals, but PLACA is also an experimental

language and has not reached production state. Of interest to the KQML research is the work of Davis that

introduced AGENT{K,16 an attempt to bring AOP and AGENT{0 to the KQML universe. AGENT{K,

an extension to AGENT{0, is a language in the AOP paradigm that uses KQML for communication. Even

with a language like AGENT{K there still remains the issue of cooperation of agents written in the AOP

paradigm with agents that do not fall in the AOP paradigm. Finally it remains to be proven the extend

to which the AOP paradigm provides a powerful enough framework for serious agent programming

Telescript

Telescript, a product of General Magic, de�nes an environment for transactions between software applica-

tions over the network, with a focus on applications in the area of electronic commerce. In the Telescript

14An agent theory is concerned with how an agent's knowledge, actions and cognitive state relate to one another, guide the

agent's \behavior" and a�ect both the agent and the environment in which the agent �nds itself, through time.
15AGENT{O is only one of the possible programming languages in the AOP paradigm. In AOP there is no \proper"

programming language. Extensions or replacements of AGENT{O may be introduced but they will have to be consistent with

the intentional description introduces by the paradigm.
16Look at URL http://www.csd.abdn.ac.uk/ pedwards/publs/agentk.html for more details.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 18

paradigm agents \travel" over the network (carrying both procedures and data) and perform actions on

data at the transport location, instead of exchanging the data. Its developers suggest that this approach

o�ers advantages on issues of bandwidth use and security, with respect to the predominant client{server

paradigm. Telescript is an interpreted, communication{centric, interpreted language executed by the Tele-

script engine that has access to the application environment through an API. So, a typical communicating

application is written partly in Telescript and partly in some other (host) language with Telescript having

control of all communication related issues, such as transporting the agent, handling conditions, scheduling

the agents activities, gathering and modifying information, etc. Telescript has attracted the interest of

commercial vendors for electronic commerce applications.

Can Telescript agents interoperate with other (non{Telescript) agents? First of all, Telescript agents

do not communicate, they transport themselves on location and execute a pre{de�ned script. Even if some

form of communication was allowed it is unknown: 1) how communication would be integrated to this

new paradigm of transportable, script{executing paradigm of agents (will agents exchange scripts?), and

2) how can Telescript agents interoperate with agents whose interaction follow the traditional client{server

paradigm. Although such questions have not been addressed yet it seems that Telescript agents will be

con�ned to a Telescript universe.

9 Conclusions

There is no silver bullet for the problem of knowledge sharing. The di�culties of addressing this issue

go beyond the plethora of applications and systems that would be candidates for knowledge sharing.

The problem itself is not a single, well{de�ned problem but rather a wide range of subproblems (and

corresponding approaches). From this point of view we feel that the KSE approach and KQML have

merits that go beyond the success of the individual solutions that have been suggested. Above all the KSE

promotes an approach to the problem and the fundamental subproblems to be addressed. This approach

includes: a) translation between representations; b) sharing the semantic (and often pragmatic) content of

the knowledge that is represented; and c) communicating attitudes about the shared knowledge. Whether

the respective solutions for these three problems will be KIF, Ontolingua and KQML is to be proven in

time, but we believe that these are the three levels at which the overall problem should be attacked.

We believe the same argument to be true for KQML. The communication language should be disso-

ciated from interaction and transport protocols, should be oblivious to the content and concerned only

with attitudes about the content. The idea of a communication language that o�ers primitives (the per-

formatives), modeled after speech acts, that have a meaning outside the context of a speci�c application

or representation is not necessarily a new one, but KQML is a �rst attempt for a communication language

based on this concept. The number and the variety of the primitives will always be a matter of debate;

KQML developers tried to balance the two extremes of having very few primitives (and thus overloading

the content) and o�ering an extensive set of performatives that would inevitably overlap and would be hard

to standardize. The other idea o�ered by KQML is that of having specialized agents, called facilitators,

that with the use of the appropriate KQML performatives can help agents �nd other agents (or be found

by other agents) that can perform desired tasks for them.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 19

References

[1] Yigal Arens. Planning and reformulating queries for semantically-modeled multidatabase systems. In

First International Conference on Information and Knowledge Management, October 1992.

[2] Yigal Arens, Chin Chee, Chun-Nan Hsu, Hoh In, and Craig A. Knoblock. Query processing in an

information mediator. In Proceedings of the ARPA/Rome Lab 1994 Knowledge-Based Planning and

Scheduling Initiative Workshop, February 1994.

[3] Marie Bienkowski, Marie desJardins, and Roberto Desimone. SOCAP: system for operations crisis ac-

tion planning. In Proceedings of the ARPA/Rome Lab 1994 Knowledge-Based Planning and Scheduling

Initiative Workshop, February 1994.

[4] Mark Burstein, editor. Proceedings of the ARPA/Rome Lab 1994 Knowledge-Based Planning and

Scheduling Initiative Workshop. Morgan Kuafmann Publishers, Inc., February 1994.

[5] Wes Chu and Hua Yang. Cobase: A cooperative query answering system for database systems.

In Proceedings of the ARPA/Rome Lab 1994 Knowledge-Based Planning and Scheduling Initiative

Workshop, February 1994.

[6] M. Cutkosky, E. Engelmore, R. Fikes, T. Gruber, M. Genesereth, and W. Mark. PACT: An experiment

in integrating concurrent engineering systems. IEEE Computer, pages 28{38, January 1993.

[7] D. Kuokka et. al. Shade: Technology for knowledge-based collaborative. In AAAI Workshop on AI

in Collaborative Design, 1993.

[8] William Mark et. al. Cosmos: A system for supporting design negotiation. Journal of Concurrent

Engineering: Applications and Research (CERA), 2(3), 1994.

[9] M. Genesereth and R. Fikes et. al. Knowledge interchange format, version 3.0 reference manual.

Technical report, Computer Science Department, Stanford University, 1992.

[10] Michael R. Genesereth and Steven P. Katchpel. Software agents. Communications of the ACM,

37(7):48{53, 147, 1994.

[11] Mike Genesereth. Designworld. In Proceedings of the IEEE Conference on Robotics and Automation,

pages 2,785{2,788. IEEE CS Press.

[12] Mike Genesereth. An agent-based approach to software interoperability. Technical Report Logic-91-6,

Logic Group, CSD, Stanford University, February 1993.

[13] Matt Ginsberg. Knowledge interchange format: The KIF of death. AI Magazine, 1991.

[14] Yannis Labrou and Tim Finin. A semantics approach for KQML { a general purpose communica-

tion language for software agents. In Third International Conference on Information and Knowledge

Management, November 1994. Available as http://www.cs.umbc.edu/kqml/papers/kqml-semantics.ps.

[15] Nancy Lehrer. The knowledge representation speci�cation language manual. Technical report, ISX

Corporation, Thousand Oaks, California, 1994.



www.manaraa.com

DRAFT: Finin, Labrou and May�eld, KQML as an agent communication language 20

[16] Robert MacGregor and Raymond Bates. The LOOM knowledge representation language. Technical

Report ISI/RS-87-188, USC/ISI, 1987. Also appears in Proceedings of the Knowledge-Based Systems

Workshop held in St. Louis, Missouri, April 21{23, 1987.

[17] M.Tenenbaum, J. Weber, and T. Gruber. Enterprise integration: Lessons from shade and pact. In

C. Petrie, editor, Enterprise Integration Modeling. MIT Press, 1993.

[18] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. Swartout. Enabling technology

for knowledge sharing. AI Magazine, 12(3):36{56, Fall 1991.

[19] Allen Newell. The knowledge level. Arti�cial Intelligence, 18:87{127, 1982.

[20] Allen Newell. Re
ections on the knowledge level. Arti�cial Intelligence, 59:31{38, 1993.

[21] Jon Pastor, Don McKay, and Tim Finin. View-concepts: Knowledge-based access to databases. In

First International Conference on Information and Knowledge Management, October 1992.

[22] Yoav Shoham. Agent{oriented programming. Arti�cial Intelligence, 60:51{92, 1993.

[23] David Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm. Morgan Kaufmann

Publishers, Inc., San Mateo, CA., 1988.


